Abstract

Previous abstract Back to issue content Next abstract
Symmetry: Culture and Science
Volume 34, Number 2, pages 183-188 (2023)
https://doi.org/10.26830/symmetry_2023_2_183

FUNCTIONAL MAPPING OF BIOMECHANICAL PROPERTIES OF DEOXYRIBONUCLEIC ACIDS

Ivan V. Stepanyan

Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), 4, M. Kharitonyevskiy Pereulok, 101990 Moscow, the Russian Federation.
Email: neurocomp.pro@gmail.com
Web: http://pentagramon.com
ORCID: 0000-0003-3176-5279

Abstract: The biomechanical properties of DNA depend on the nucleotide composition of this molecule. At the same time, the nucleotide composition on local and global scales is difficult to visualize. To do this, you can use x-rays, the clarity of which leaves much to be desired, or various imaging methods. We present a new view on the visualization of the biomechanical properties of DNA by constructing functional mappings in parametric spaces in binary-orthogonal Walsh-Rademacher functions encoding physicochemical parameters and give examples of such visualizations.

Keywords: Biomechanics, DNA, visualization, Walsh-Hadamard functions, mapping, machine analysis

References:
Bao, G. (2000) Single-molecule biomechanics: DNA and protein deformation, In ASME International Mechanical Engineering Congress and Exposition, 19173(25-35), American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2000-1918

Bao, G., Kamm, R. D., Thomas, W., et al., (2010) Molecular biomechanics: the molecular basis of how forces regulate cellular function, Cellular and Molecular Bioengineering, 3, 91-105. https://doi.org/10.1007/s12195-010-0109-z

Brahmachari, S., & Marko, J. F. (2018) DNA mechanics and topology, Biomechanics in Oncology, 11-39. https://doi.org/10.1007/978-3-319-95294-9_2

Brewer, L. R. (2011) Deciphering the structure of DNA toroids, Integrative Biology, 3(5), 540-547. https://doi.org/10.1039/c0ib00128g

Chen, F., & Zhang, Y. T. (2003) A DNA structure-based bionic wavelet transform and its application to DNA sequence analysis, Applied Bionics and Biomechanics, 1(1), 3-9. https://doi.org/10.1533/abib.2003.1.1.3

Dorfman, K. D. (2018) The statistical segment length of DNA: Opportunities for biomechanical modeling in polymer physics and next-generation genomics, Journal of biomechanical engineering, 140(2). https://doi.org/10.1115/1.4037790

Dos Santos, Á., Cook, A. W., Gough, R. E., Schilling, M., Olszok, N. A., Brown, I., Wang, L., Aaron, J., Martin-Fernandez, M. L., Rehfeldt, F., & Toseland, C. P. (2021) DNA damage alters nuclear mechanics through chromatin reorganization, Nucleic acids research, 49(1), 340–353. https://doi.org/10.1093/nar/gkaa1202

Harris, S. A., Sands, Z. A., & Laughton, C. A. (2005) Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA. Biophysical journal, 88(3), 1684-1691. https://doi.org/10.1529/biophysj.104.046912

Kaczorowska, A., Lamperska, W., Frączkowska, K., Masajada, J., Drobczyński, S., Sobas, M., Wróbel, T., Chybicka, K.; Tarkowski, R.; Kraszewski, S., et al (2020) Profound Nanoscale Structural and Biomechanical Changes in DNA Helix upon Treatment with Anthracycline Drugs, International Journal of Molecular Sciences, 21(11), 4142. https://doi.org/10.3390/ijms21114142

Mehta, A. D., Rief, M., Spudich, J. A., Smith, D. A., & Simmons, R. M. (1999) Single-molecule biomechanics with optical methods, Science, 283(5408), 1689-1695. https://doi.org/10.1126/science.283.5408.1689

Milstein, J. N., & Meiners, J. C. (2011) On the role of DNA biomechanics in the regulation of gene expression, Journal of The Royal Society Interface, 8(65), 1673-1681. https://doi.org/10.1098/rsif.2011.0371

Petoukhov S.V. (2022a) The Principle “Like Begets Like” in Molecular and Algebraic-Matrix Gentics. Preprints 2022, 2022110528. https://do.org/10.20944/preprints202211.0528.v2

Petoukhov S.V. (2022b) Binary oppositions, algebraic holography, and stochastic rules in genetic informatics, Biosystems, 221(104760) https://doi.org/10.1016/j.biosystems.2022.104760

Petoukhov S.V., Petukhova E.S., Svirin V.I. (2022) Complex and hyperbolic Fibonacci numbers and phyllotaxis, Symmetry: Culture and Science, 33(3), 209-220. https://doi.org/10.26830/symmetry_2022_3_209

Petoukhov, S. V., Petukhova, E. S., & Svirin, V. I. (2023) Genetic biomechanics, stochastic rules of genomes, and stochastic resonance, In AIP Conference Proceedings, 2697(1), AIP Publishing, https://aip.scitation.org/doi/abs/10.1063/5.0111801. https://doi.org/10.1063/5.0111801

Stepanyan I.V, Lednev M.Y. (2022b) A Comparative Analysis of Different Strains of Coronavirus Based on Genometric Mappings, Symmetry, 14(5), 942. https://doi.org/10.3390/sym14050942

Stepanyan I.V., Lednev M.Y. (2022a). Parametric Multispectral Mappings and Comparative Genomics, Symmetry, 14(12):2517. https://doi.org/10.3390/sym14122517

Stepanyan, I.V., Lednev, M.Y. (2022c) Spectral Decomposition of Mappings of Molecular Genetic Information in the System Basis of Single Nucleotide Functions, Symmetry, 14(844). https://doi.org/10.3390/sym14050844

Stepanyan, I.V., Savkin, M.O., Nechipurenko, Yu., D. (2022) Approaches to Sonification of Mechanical Properties of Nucleotide Sequences, Symmetry: Culture and Science, 33(3), 221-232. https://doi.org/10.26830/symmetry_2022_3_221

Wang, W., Hayes, P. R., Ren, X., & Taylor, R. E. (2023) Synthetic cell armor made of DNA origami, BioRxiv. https://doi.org/10.1101/2023.02.20.529284

Yakushevich, L. V. (2011) Biomechanics of DNA: rotational oscillations of bases. Journal of Nonlinear Mathematical Physics, 18(supp02), 449-461. https://doi.org/10.1142/S1402925111001623

Previous abstract Back to issue content Next abstract