Abstract

Previous abstract Back to issue content Next abstract
Symmetry: Culture and Science
Volume 33, Number 3, pages 233-247 (2022)
https://doi.org/10.26830/symmetry_2022_3_233

POTENTIAL OF TECHNOLOGY TO DEEPEN UNDERSTANDING OF THE HIDDEN COMPLEXITY OF THE GOLDEN RATIO – FROM INVESTIGATIONS WITH POLYGONS TO GENERALIZED GOLDEN RECTANGLES

Sergei Abramovich1*, Viktor Freiman22

1 Department of Elementary Education, State University of New York, Potsdam, NY 13676, U.S.A.
Email: abramovs@potsdam.edu
Web: https://people.potsdam.edu/abramovs

2 Faculté des sciences de l’éducation, Université de Moncton, Campus Moncton, Moncton, NB, Canada
Email: viktor.freiman@umoncton.ca
Web: https://www.umoncton.ca/prof/umcm-freiman_viktor

* corresponding author

Abstract: An increasing role of mathematical experiments in the development of deeper understanding is still underestimated in the context of education. In this paper, we highlight a potential of technology, digital and physical to enrich students’ investigation of the Golden Ratio. Moving from construction and experimentation with ratios in polygons to exploration of Fibonacci-like sequences, learners can get an intuitive sense of hidden relationships prior to moving to formal ways of proving.

Keywords: Golden Ratio, Golden rectangle, Fibonacci sequence, computer experiments, technology, learning, mathematics education.

References:
Abramovich, S. (2010) Topics in Mathematics for Elementary Teachers: A Technology-Enhanced Experiential Approach, Charlotte, NC: Information Age Publishing.

Abramovich, S. (2014) Computational Experiment Approach to Advanced Secondary Mathematics Curriculum, Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-94-017-8622-5

Abramovich, S., Leonov, G. A. (2019) Revisiting Fibonacci Numbers through a Computational Experiment, New York, NY: Nova Science Publishers.

Archimedes (1912) The Method of Archimedes, edited by T. L. Heath, Cambridge, England: Cambridge University Press.

Arnold, V. I. (2005) Experimental Mathematics, Moscow: Fazis. [In Russian].

Avitzur, R. (2004) Graphing Calculator 4.0 [Computer software], Berkeley, CA: Pacific Tech.

Conference Board of the Mathematical Sciences (2012) The Mathematical Education of Teachers II, Washington, DC: The Mathematical Association of America.

Borwein, J. M. (2005) The experimental mathematics: The pleasure of discovery and the role of proof. International Journal of Computers for Mathematical Learning, 10, 75-108. https://doi.org/10.1007/s10758-005-5216-x

Bruner, J. S. (1961) The Process of Education, Cambridge, MA: Harvard University Press.

Catalan, E. (1884) Notes sur la théorie des fractions continues et sur certaines séries [Notes about the theory of continued fractions and certain series], Mémoires de L’Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, Tome XLV, Bruxelles, Belgium: F. Hayez, Imprimeur de L’Académie Royale.

Ernie, K., LeDocq, R., Serros, S., Tong, S. (2009) Challenging students’ beliefs about mathematics, in R. A. R. Gurung, N. L. Chick and A. A. Ciccone (Eds), Exploring Signature Pedagogies, pp. 260–279, Sterling, VA: Stylus.

Jarvis, D. (2007) Math Roots: Mathematics and visual arts: Exploring the golden ratio, Mathematics Teaching in the Middle School, 12, 8, 467-473. https://doi.org/10.5951/MTMS.12.8.0467

Jungić, V., Burazin, A. (2021) On experimental mathematics and mathematics education, The American Mathematical Monthly, 128, 832-844. https://doi.org/10.1080/00029890.2021.1964275

Hambidge, J. (1967) The Elements of Dynamic Symmetry, New York: Dover Publications. Original edition: (1926) Brentano's, 140 p.

Hethcote, H. W., Shaeffer, A. J. (1972) A computer laboratory course for calculus and linear algebra, The American Mathematical Monthly,79, 290-293. https://doi.org/10.1080/00029890.1972.11993034

Kepler, J. (1619) Ioannis Keppleri Harmonices Mundi Libri V [The Five Books of Johannes Kepler’s The Harmony of the World], Linz: Johannes Planck, 255 pp. [Published in Latin. The five books are bound and published as a single volume.] https://doi.org/10.5479/sil.135810.39088002800316

Koshy, T. (2001) Fibonacci and Lucas Numbers with Applications, New York, NY: John Wiley & Sons. https://doi.org/10.1002/9781118033067

Leibniz, G. W. (1703) Explication de l’arithmétique binaire, qui se sert des seuls caractères Oet I avec des remarques sur son utilité et sur ce qu’elle donne le sens des anciennes figures chinoises deFohy, Mémoires de mathématique et de physique de l’Académie royale des sciences, Académie royaledes sciences.

Lucas, E. (1891) Théorie des nombres (Vol. 1), Gauthier-Villars.

McEvan, H., Bull, B. (1991) The pedagogic nature of subject matter knowledge. American Educational Research Journal, 28, 316–334. https://doi.org/10.3102/00028312028002316

Pόlya, G. (1965) Mathematical discovery: On understanding, learning and teaching problem solving, volume 2, New York, NY: John Wiley & Sons.

Power, S. A. and Shannon, A. G. (2019) Natural Mathematics, the Fibonacci Numbers and Aesthetics in Art, Journal of Advances in Mathematics, 17. https://doi.org/10.24297/jam.v17i0.8479

Redmond, J., Hon, T.-K. (2014) Teaching the I Ching, Oxford, UK: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199766819.001.0001

Shulman, L. S. (2005) Signature pedagogies in the professions, Daedalus, 134, 3, 52-59. https://doi.org/10.1162/0011526054622015

Sigler, L. (2002) Fibonacci's Liber Abaci, New York: Springer. https://doi.org/10.1007/978-1-4613-0079-3

Sparavigna, A. C., Baldi, M. M. (2017) Symmetry and the golden ratio in the analysis of a regular pentagon, International Journal of Mathematical Education in Science and Technology, 48, 2, 306-316. https://doi.org/10.1080/0020739X.2016.1233587

Stakhov, A. P. (1989) The golden section in the measurement theory, Computers & Mathematics with Applications, 17, 4-6, 613-638. https://doi.org/10.1016/0898-1221(89)90252-6

Steinbach, P. (1997) Golden fields: a case for the heptagon, Mathematics Magazine, 70, 1, 22-31. https://doi.org/10.1080/0025570X.1997.11996494

Sugimoto, T. (2021) Inducing the symmetries out of the complexity: The Kepler triangle and its kin as a model problem, in Darvas, G. (Ed.) Complex Symmetries, Cham: Birkhäuser. https://doi.org/10.1007/978-3-030-88059-0_7

Trgalová, J. (2022) Digital technology and its various uses from the instrumental perspective: The case of dynamic geometry, in Richard, P.R., Vélez, M.P., Van Vaerenbergh, S. (Eds.), Mathematics Education in the Age of Artificial Intelligence (pp. 417-429), Cham, Switzerland: Birkhäuser/Springer. https://doi.org/10.1007/978-3-030-86909-0_18

Visokolskis, S., Trillini, C. (2019) In the quest for invariant structures through graph theory, groups and mechanics: Methodological aspects in the history of applied mathematics, in International Conference on Numerical Computations: Theory and Algorithms (pp. 208-222) Cham, Switzerland: Birkhäuser/Springer. https://doi.org/10.1007/978-3-030-40616-5_16

Wilson, J. (2021) Dynamic symmetry: A history and analysis, Journal of Mathematics and the Arts, 15 1, 19-32. https://doi.org/10.1080/17513472.2020.1805157

Previous abstract Back to issue content Next abstract