Previous abstract | Back to issue content | Next abstract |
Volume 33, Number 1, pages 055-068 (2022)
https://doi.org/10.26830/symmetry_2022_1_055
CAD GEOMETRY FOR THE TRADITIONAL TASTIR STYLE MOROCCAN AND ANDALUSIAN 16-FOLD ROSETTES
Zouhair Ouazene1*, Rachid Benslimane2, Aziz Khamjane3
1 Laboratory of Innovative Technologies, Sidi Mohamed Ben Abdellah University Fez, Morocco.
E-mail: zouhair.ouazene@usmba.ac.ma
ORCID: 0000-0003-3257-2460
2 Laboratory of Innovative Technologies, Sidi Mohamed Ben Abdellah University Fez, Morocco.
E-mail: rachid.benslimane@usmba.ac.ma
ORCID: 0000-0002-7530-8929
3 Laboratory of Applied Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
E-mail: aziz.khamjane@usmba.ac.ma
ORCID: 0000-0002-3508-8968
* corresponding author
Abstract: Thanks to its beauty and its mathematical rigor, Islamic art has attracted the attention of crystallographers, mathematicians, designers, artists, and architects. Among scientific literature, various works have been performed to analyze the mathematical structures of its ornaments and investigate their construction techniques. This paper will first analyze the traditional Tastir style to design the sixteen-fold rosettes frequently used in Moroccan and Andalusian geometric art. Based on this analysis, we will then propose a computerized method to construct patterns with a sixteen-fold rosette.
Keywords: symmetry, Islamic art, geometric art, traditional geometry, Tastir style, star shapes, rosettes.
References:
Aboufadil, Y. et al. (2019) Varieties of 12-fold rosettes and their applications in Moroccan geometric ornament, Journal of Applied Crystallography, 52, 3, 605–617. https://doi.org/10.1107/S1600576719004928
Aboufadil, Y. et al. (2020) Comparative study between Turkish and Moroccan ornamental patterns from the 11th to the 20th centuries, Symmetry: Culture and Science, 31, 2, 117–176. https://doi.org/10.26830/symmetry_2020_2_117
Ait Lahcen, Y., Jali, A., El Oirrak, A., Aboufadil, Y. (2021) Computing technologies to construct an Islamic geometric patterns respecting the “Hasba” method., In: Ben Ahmed, M., Mellouli, S., Braganca, L., Anouar Abdelhakim, B., Bernadetta, K., eds. Emerging Trends in ICT for Sustainable Development (Advances in Science, Technology & Innovation), Cham: Springer. https://doi.org/10.1007/978-3-030-53440-0_27
Al Ajlouni, R.A. (2011) A long-range hierarchical clustering model for constructing perfect quasicrystalline formations, Philosophical Magazine, 91, 19–21, 2728–2738. https://doi.org/10.1080/14786435.2010.532515
Al Ajlouni, R. (2013) Octagon-based quasicrystalline formations in Islamic architecture, Aperiodic Crystals, 1197, 49–57. https://doi.org/10.1007/978-94-007-6431-6_7
Bodner, B.L. (2007) Bridges 2006: Mathematical connections in art, music, and science, Nexus Network Journal, 9, 1, 145–150. https://doi.org/10.1007/s00004-006-0034-6
Bodner, B.L. (2011) “A nine- and twelve-pointed star polygon design of the Tashkent scrolls”, In: Sarhangi, R. and Séquin, C., eds. Proceedings of Bridges 2011: Mathematics, Music, Art, Architecture, Culture, Phoenix, AZ: Tesselations Publishing, 147–154.
Bodner, B.L. (2013) “The planar crystallographic groups represented at the Alhambra”, In: Hart, G. and Sarhangi, R., eds. Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture, Phoenix, AZ: Tesselations Publishing, 225–232.
Bodner, B.L. (2014) “The planar space Groups of Mamluk patterns”, In: Greenfield, G., Hart, G. and Sarhangi, R., eds. Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, Phoenix, AZ: Tesselations Publishing, 35–42.
Bonner, J. (2014) “The historical use of polygonal systems to create Islamic geometric patterns”, In: Les Tracés De L’arabesque Géométrique, Casablanca, Morocco: Fondation De La Mosquée Hassan, 85–94.
Bonner, J. (2017) “3 polygonal design methodology”, In: Islamic Geometric Patterns, New York, NY: Springer, 221–548. https://doi.org/10.1007/978-1-4419-0217-7_3
Bonner, J., Pelletier, M. et al. (2012) “A 7-fold system for creating Islamic geometric patterns, Part 1: Historical antecedents”, In: Bosch, R., McKenna, D. and Sarhangi, R., eds. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture, Phoenix, AZ: Tesselations Publishing, Pp. 141–148.
Castera, J.M. (1999) Arabesques: Decorative Arts in Morocco, ACR Edition.
Cromwell, P.R. (2009) The search for quasi-periodicity in Islamic 5-fold ornament, Mathematical Intelligencer, 31, 1, 36–56. https://doi.org/10.1007/s00283-008-9018-6
Cromwell, P.R. (2010) Islamic geometric designs from the Topkap scroll I: Unusual arrangements of stars, Journal of Mathematics and the Arts, 4, 2, 73–85. https://doi.org/10.1080/17513470903311669
Cromwell, P.R. (2015) Cognitive bias and claims of quasiperiodicity in traditional Islamic patterns, Mathematical Intelligencer, 37, 4, 30–44. https://doi.org/10.1007/s00283-015-9538-9
D’Avennes, P. (1877) L’Art arabe d’après les monuments du Kaire depuis le VIIe siècle jusqu’à la fin du XVIIIe, Paris: A. Morel et Cie.
Djibril, M. O., Hadi, Y. and Thami, R. O. H. (2006) Fundamental region based indexing and classification of Islamic star pattern images, In: Levine, J.A., Paulsen, R.R. and Zhang, Y., eds. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), London, UK: Springer, 865–876. https://doi.org/10.1007/11867661_78
Grünbaum, B., Grünbaum, Z. and Shepard, G.C. (1986) Symmetry in Moorish and other ornaments, Computers and Mathematics with Applications, 12, 3-4, 641–653. https://doi.org/10.1016/0898-1221(86)90416-5
Hankin, E.H. (1925a) Examples of methods of drawing geometrical arabesque patterns, The Mathematical Gazette, 12, 176, 370. https://doi.org/10.2307/3604213
Hankin, E.H. (1925b) The Drawings of Geometric Patterns in Saracenic Art, (Memoirs of Archaeological Survey of India, 15), Calcutta: Government of India, Central Publication Branch.
Hankin, E.H. (1934) Some difficult Saracenic designs II: A pattern containing seven-rayed stars, The Mathematical Gazette, 18, 229, 165. https://doi.org/10.2307/3606813
Hankin, E.H. (1936) Some difficult Saracenic designs III: A pattern containing fifteen-rayed stars, The Mathematical Gazette, 20, 241, 318. https://doi.org/10.2307/3607312
Hargittai, I. and Makovicky, E. (1992) “800-year-old pentagonal tiling from Marāgha, Iran, and the new varieties of aperiodic tiling it inspired”, In: Fivefold Symmetry, Singapore: World Scientific Publishing, 67–86. https://doi.org/10.1142/9789814439497_0004
Joel, G. and Wade, D. (1977) Pattern in Islamic art, Leonardo, 10, 3, 255. https://doi.org/10.2307/1573470
Jones, O. (1856) The Grammar of Ornament, London, UK: Day and Son. https://doi.org/10.5479/sil.387695.39088012147732
Jowers, I. et al. (2010) A study of emergence in the generation of Islamic geometric patterns, In: Bharat, D., Li, A.I., Gu, N. and Park, H.J., eds. New Frontiers: Proceedings of the 15th International Conference on Computer-Aided Architectural Design in Asia, Hong Kong: CAADRIA, 39–48.
Kaplan, C.S. (2005) Islamic star patterns from polygons in contact, In: Inkpen, K. and Van de Panne, M., eds. GI ’05: Proceedings of Graphics Interface 2005: Front Matter, Canadian Human-Computer Communications Society: 177–185.
Kaplan, C.S. and Salesin, D.H. (2004) Islamic star patterns in absolute geometry, ACM Transactions on Graphics, 23, 2, 97–119. https://doi.org/10.1145/990002.990003
Khamjane, A. et al. (2019) Computer graphics for generating islamic geometric periodic and quasi-periodic patterns, In: 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), IEEE, 391–400. https://doi.org/10.1109/ISACS48493.2019.9068879
Khamjane, A. and Benslimane, R. (2018a) A computerized method for generating Islamic star patterns, CAD Computer Aided Design, 97, 15–26. https://doi.org/10.1016/j.cad.2017.11.002
Khamjane, A. And Benslimane, R. (2018b) Generating Islamic quasi-periodic patterns: A new method, Journal on Computing and Cultural Heritage, 11, 3, 13. https://doi.org/10.1145/3127090
Khamjane, A., Benslimane, R. and Ouazene, Z. (2020) Method of construction of decagonal self-similar patterns, Nexus Network Journal, 22, 2, 507–520. https://doi.org/10.1007/s00004-019-00461-4
Lalvani, H. (1989) Coding and generating complex periodic patterns, The Visual Computer, 5, 4, 180–202. https://doi.org/10.1007/BF02153749
Lee, A.J. (1975) Islamic Star Patterns—Notes, [manuscript].
Lee, T. and Soliman, A. (2014) The Geometric Rosette: Analysis of an Islamic Decorative Motif, [manuscript]. Retrieved from: http://tilingsearch.org/Rosette%20analysis.pdf (Accessed: 25 March 2022).
Lu, P.J. and Steinhardt, P.J. (2007) Decagonal and quasi-crystalline tilings in medieval Islamic architecture, Science, 315, 5815, 1106–1110. https://doi.org/10.1126/science.1135491
Makovicky, E. and Makovicky, N.M. (2011) The first find of dodecagonal quasiperiodic tiling in historical Islamic architecture, Journal of Applied Crystallography, 44, 3, 569–573. https://doi.org/10.1107/S0021889811013744
Makovicky, E., Pérez, F.R. and Hach-Alí, P.F. (1998) Decagonal patterns in the Islamic ornamental art of Spain and Morocco, Boletin de la Sociedad Espanola de Mineralogia, 21, 107–127.
Nasr, S.H. (1976) Islamic Patterns: An Analytical and Cosmological Approach, London: Thames and Hudson.
Ostromoukhov, V. (1998) ‘Mathematical Tools For Computer-Generated Ornamental Patterns’, In: Levine, J.A., Paulsen, R.R. and Zhang, Y., eds. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), London, UK: Springer, 193–223. https://doi.org/10.1007/BFb0053272
Ouazene, Z., Khamjane, A. and Benslimane, R. (2022) “Relationship between eight-fold star and other tiles in traditional method ‘Tastir’”, In: Saidi, R., El Bhiri, B., Maleh, Y., Mosallam, A., Essaaidi, M., eds. Advanced Technologies for Humanity: ICATH 2021 (Lecture Notes on Data Engineering and Communications Technologies, 110), Cham, Switzerland: Springer, 352–358. https://doi.org/10.1007/978-3-030-94188-8_33
Paccard, A. and Guggenheim, M. (1980) Traditional Islamic Craft in Moroccan Architecture, Saint-Jorioz, France: Atelier 74.
Rønning, F. (2009) Islamic patterns and symmetry groups, Philosophy of Mathematics Education Journal, 24, 14.
Thalal, A. et al. (2011) Islamic geometric patterns constructed by craftsmen working on wood, Symmetry: Culture and Science, 22, 1, 103–130.
Wichmann, B. (2008) Symmetry in Islamic geometric art, Symmetry: Culture and Science, 19, 2-3, 95–112.
Yassine, A.L. et al. (2020) New approach for the detection of family of geometric shapes in the Islamic geometric patterns, International Journal of Advanced Computer Science and Applications, 11, 3, 342–348. https://doi.org/10.14569/Ijacsa.2020.0110343
Previous abstract | Back to issue content | Next abstract |