Previous abstract | Back to issue content | Next abstract |
Volume 33, Number 1, pages 045-054 (2022)
https://doi.org/10.26830/symmetry_2022_1_045
ABOUT THE HARMONIC MEAN OF THE UNIT PARABOLA
Luděk Spíchal*
* Czech Forestry Academy Trutnov, 9 Lesnická, Trutnov 54101, Czech Republic.
E-mail: spichal@clatrutnov.cz
Abstract: The paper deals with the construction of the harmonic mean, which is found geometrically from the reciprocals of positive real numbers using the unit parabola.
Keywords: Harmonic mean, unit parabola, golden section, Pythagorean means.
MSC 2010: 51M15, 26E60.
References:
Gielis, J. (2003) Inventing the Circle: The Geometry of Nature, Antwerp: Geniaal Publishers.
Gielis, J. (2017) The Geometrical Beauty of Plants, Paris: Atlantis Press. https://doi.org/10.2991/978-94-6239-151-2
Miel, G. (1983) Of calculations past and present: The Archimedean algorithm, The American Mathematical Monthly, 90, 1, 17–35. https://doi.org/10.1080/00029890.1983.11971147
Olsen, S.A. (2013) The golden section’s pivotal role in modern science, Symmetry: Culture and Science, 24, 1, 257–274.
Okumura, H. and Saitoh, S. (2018) Harmonic mean and division by zero, Forum Geometricorum, 18, 155–159.
Spíchal, L. (2021) Jednotková parabola, zlatý řez a parabolické π, [in Czech], Rozhledy matematicko-fyzikální, 96, 1, 8–17.
Šestořádová, A. (2019) Geometrická interpretace průměrů v programu GeoGebra, [Master’s Thesis in Czech with English abstract], Olomouc: Univerzita Palackého, Pedagogická fakulta, 70 pp.
Vincent, S.P. (2007) Archimedes revisited: The approximation of π by regular polygon perimeters, The Mathematical Gazette, 91, 520, 117–120. https://doi.org/10.1017/S0025557200181148
Previous abstract | Back to issue content | Next abstract |